

Carbon storage in arable landscapes in the United Kingdom

John Holland & David Stevenson

Game & Wildlife Conservation Trust

www.quessa.eu

- Sampled 18 Landscape sectors 2 fields in each following winter wheat and ca. 2 SNH/LS
- SNH I2 HL (grass margins), I I WL (hedgerows), I I
 WA
- 10 Soil cores/habitat
- Loss on Ignition to determine Soil Organic Matter
- Assume 50% of SOM was Carbon (Pribyl, 2010)
- SNH & field areas calculated from GIS

Mean t Carbon per ha for each habitat. (*=outliers).

Significant difference between habitats (p<0.01). Post-hoc HL>Field

Mean weighted t Carbon per LS

	Fields	HL & HA	WL	WA
Mean % of Carbon	81.9	3.0	2.2	12.8
se	2.2	0.5	0.2	1.9

Relationship between % C in fields of total in LS with % Soil Organic Matter

Field stored C is more important when low in Semi Natural Habitats, aim for 6% SOM with average SOM in SNH

Conclusions

- Improving SOM in fields is most effective way to increase carbon sequestration.
- Of the Semi-Natural Habitats, herbaceous habitats offer best opportunity for rapid carbon sequestration.
- Large variation between farms suggests further opportunities to improve.